A class of invisible spaces

Quidquid latine dictum sit, altum videtur

K. P. Hart

Faculty EEMCS TU Delft

Hejnice, 1. Unor, 2015: 10:00 - 10:45

Small diagonals

Definition (Van Douwen, Hušek, Zhou)

A space, X, has a *small diagonal* if every uncountable subset of $X^2 \setminus \Delta(X)$ has an uncountable subset whose closure is disjoint from $\Delta(X)$.

Small diagonals

Definition (Van Douwen, Hušek, Zhou)

A space, X, has a *small diagonal* if every uncountable subset of $X^2 \setminus \Delta(X)$ has an uncountable subset whose closure is disjoint from $\Delta(X)$.

Hušek defined the negation: X has an ω_1 -accessible diagonal is there if a sequence $\langle\langle x_\alpha,y_\alpha\rangle:\alpha\in\omega_1\rangle$ that converges to $\Delta(X)$

A sufficient condition

If $\Delta(X)$ is a G_{δ} -set then X has a small diagonal.

A sufficient condition

If $\Delta(X)$ is a G_{δ} -set then X has a small diagonal. Hence, for example, metrizable spaces have small diagonals.

Theorem (Hušek, special case)

If $f: \prod_{i \in I} X_i \to X$ is continuous, X and all X_i are compact and X has a small diagonal

Theorem (Hušek, special case)

If $f: \prod_{i \in I} X_i \to X$ is continuous, X and all X_i are compact and X has a small diagonal then f depends on countably many coordinates.

Theorem (Hušek, special case)

If $f: \prod_{i \in I} X_i \to X$ is continuous, X and all X_i are compact and X has a small diagonal then f depends on countably many coordinates.

Here is a heavy-handed proof.

Theorem (Hušek, special case)

If $f: \prod_{i \in I} X_i \to X$ is continuous, X and all X_i are compact and X has a small diagonal then f depends on countably many coordinates.

Here is a heavy-handed proof.

Assume not ... Contradiction.

Take a sequence $\langle M_{\alpha} : \alpha \in \omega_1 \rangle$ of countable elementary substructures of a suitable $H(\theta)$ such that

Take a sequence $\langle M_{\alpha} : \alpha \in \omega_1 \rangle$ of countable elementary substructures of a suitable $H(\theta)$ such that $\langle X_i : i \in I \rangle$, f and X belong to M_0 ,

Take a sequence $\langle M_{\alpha} : \alpha \in \omega_1 \rangle$ of countable elementary substructures of a suitable $H(\theta)$ such that $\langle X_i : i \in I \rangle$, f and X belong to M_0 , and also $\langle M_{\beta} : \beta \leqslant \alpha \rangle \in M_{\alpha+1}$ (all α)

Take a sequence $\langle M_{\alpha}: \alpha \in \omega_1 \rangle$ of countable elementary substructures of a suitable $H(\theta)$ such that $\langle X_i: i \in I \rangle$, f and X belong to M_0 , and also $\langle M_{\beta}: \beta \leqslant \alpha \rangle \in M_{\alpha+1}$ (all α) and $M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta}$ (limit α).


```
Take a sequence \langle M_{\alpha}: \alpha \in \omega_1 \rangle of countable elementary substructures of a suitable H(\theta) such that \langle X_i: i \in I \rangle, f and X belong to M_0, and also \langle M_{\beta}: \beta \leqslant \alpha \rangle \in M_{\alpha+1} (all \alpha) and M_{\alpha} = \bigcup_{\beta < \alpha} M_{\beta} (limit \alpha). Apply "Assume not" at each \alpha
```



```
Take a sequence \langle M_\alpha:\alpha\in\omega_1\rangle of countable elementary substructures of a suitable H(\theta) such that \langle X_i:i\in I\rangle, f and X belong to M_0, and also \langle M_\beta:\beta\leqslant\alpha\rangle\in M_{\alpha+1} (all \alpha) and M_\alpha=\bigcup_{\beta<\alpha}M_\beta (limit \alpha).
```

Apply "Assume not" at each α : there are x_{α} and y_{α} that have the same coordinates in $I \cap M_{\alpha}$ but satisfy $f(x_{\alpha}) \neq f(y_{\alpha})$.

Take basic neighbourhoods V_{α} and W_{α} of x_{α} and y_{α} such that $f[V_{\alpha}] \cap f[W_{\alpha}] = \emptyset$.

Take basic neighbourhoods V_{α} and W_{α} of x_{α} and y_{α} such that $f[V_{\alpha}] \cap f[W_{\alpha}] = \emptyset$.

Now redefine y_{α} so that it agrees with x_{α} outside the union, F_{α} , of the supports of V_{α} and W_{α} .

Take basic neighbourhoods V_{α} and W_{α} of x_{α} and y_{α} such that $f[V_{\alpha}] \cap f[W_{\alpha}] = \emptyset$.

Now redefine y_{α} so that it agrees with x_{α} outside the union, F_{α} , of the supports of V_{α} and W_{α} .

Then still $f(x_{\alpha}) \neq f(y_{\alpha})$ but now the points differ in finitely many places.

Take basic neighbourhoods V_{α} and W_{α} of x_{α} and y_{α} such that $f[V_{\alpha}] \cap f[W_{\alpha}] = \emptyset$.

Now redefine y_{α} so that it agrees with x_{α} outside the union, F_{α} , of the supports of V_{α} and W_{α} .

Then still $f(x_{\alpha}) \neq f(y_{\alpha})$ but now the points differ in finitely many places.

By elementarity x_{α} , y_{α} , V_{α} and W_{α} may be taken in $M_{\alpha+1}$

Take basic neighbourhoods V_{α} and W_{α} of x_{α} and y_{α} such that $f[V_{\alpha}] \cap f[W_{\alpha}] = \emptyset$.

Now redefine y_{α} so that it agrees with x_{α} outside the union, F_{α} , of the supports of V_{α} and W_{α} .

Then still $f(x_{\alpha}) \neq f(y_{\alpha})$ but now the points differ in finitely many places.

By elementarity x_{α} , y_{α} , V_{α} and W_{α} may be taken in $M_{\alpha+1}$, and so $F_{\alpha} \subseteq M_{\alpha+1} \setminus M_{\alpha}$.

Take an uncountable subset A of ω_1 such that $\operatorname{cl}\{\langle f(x_\alpha), f(y_\alpha)\rangle : \alpha \in A\}$ is disjoint from $\Delta(X)$.

Take an uncountable subset A of ω_1 such that $\operatorname{cl}\left\{\left\langle f(x_\alpha), f(y_\alpha)\right\rangle : \alpha \in A\right\}$ is disjoint from $\Delta(X)$.

Take $x \in \prod_{i \in I} X_i$ such that $\{\alpha \in A : x_\alpha \in U\}$ is uncountable, for every neighbourhood U of x.

Take an uncountable subset A of ω_1 such that $\operatorname{cl}\left\{\left\langle f(x_\alpha), f(y_\alpha)\right\rangle : \alpha \in A\right\}$ is disjoint from $\Delta(X)$.

Take $x \in \prod_{i \in I} X_i$ such that $\{\alpha \in A : x_\alpha \in U\}$ is uncountable, for every neighbourhood U of x.

Take a basic neighbourhood U of x such that $f[U]^2$ is disjoint from the closure above.

Take an uncountable subset A of ω_1 such that $\operatorname{cl}\left\{\left\langle f(x_\alpha), f(y_\alpha)\right\rangle : \alpha \in A\right\}$ is disjoint from $\Delta(X)$.

Take $x \in \prod_{i \in I} X_i$ such that $\{\alpha \in A : x_\alpha \in U\}$ is uncountable, for every neighbourhood U of x.

Take a basic neighbourhood U of x such that $f[U]^2$ is disjoint from the closure above.

Take $\alpha \in A$ such that F_{α} is disjoint from the support of U, yet $x_{\alpha} \in U$

Take an uncountable subset A of ω_1 such that $\operatorname{cl}\left\{\left\langle f(x_\alpha), f(y_\alpha)\right\rangle : \alpha \in A\right\}$ is disjoint from $\Delta(X)$.

Take $x \in \prod_{i \in I} X_i$ such that $\{\alpha \in A : x_\alpha \in U\}$ is uncountable, for every neighbourhood U of x.

Take a basic neighbourhood U of x such that $f[U]^2$ is disjoint from the closure above.

Take $\alpha \in A$ such that F_{α} is disjoint from the support of U, yet $x_{\alpha} \in U$, then also $y_{\alpha} \in U$

Take an uncountable subset A of ω_1 such that $\operatorname{cl}\left\{\left\langle f(x_\alpha), f(y_\alpha)\right\rangle : \alpha \in A\right\}$ is disjoint from $\Delta(X)$.

Take $x \in \prod_{i \in I} X_i$ such that $\{\alpha \in A : x_\alpha \in U\}$ is uncountable, for every neighbourhood U of x.

Take a basic neighbourhood U of x such that $f[U]^2$ is disjoint from the closure above.

Take $\alpha \in A$ such that F_{α} is disjoint from the support of U, yet $x_{\alpha} \in U$, then also $y_{\alpha} \in U$, and $\langle f(x_{\alpha}), f(y_{\alpha}) \rangle \in f[U]^{2}$.

Take an uncountable subset A of ω_1 such that $\operatorname{cl}\left\{\left\langle f(x_\alpha), f(y_\alpha)\right\rangle : \alpha \in A\right\}$ is disjoint from $\Delta(X)$.

Take $x \in \prod_{i \in I} X_i$ such that $\{\alpha \in A : x_\alpha \in U\}$ is uncountable, for every neighbourhood U of x.

Take a basic neighbourhood U of x such that $f[U]^2$ is disjoint from the closure above.

Take $\alpha \in A$ such that F_{α} is disjoint from the support of U, yet $x_{\alpha} \in U$, then also $y_{\alpha} \in U$, and $\langle f(x_{\alpha}), f(y_{\alpha}) \rangle \in f[U]^{2}$.

Contradiction!

Elementary sequences

Many proofs of results on csD spaces (compact small Diagonal) work like this.

Elementary sequences

Many proofs of results on csD spaces (compact small Diagonal) work like this.

Let X be compact; a sequence $\langle M_\alpha:\alpha\in\omega_1\rangle$ of countable elementary substructures, as above, with $X\in M_0$ is an elementary sequence for X.

We assume X to be embedded into $[0,1]^{\kappa}$, say $\kappa = w(X)$, so the following makes sense.

We assume X to be embedded into $[0,1]^{\kappa}$, say $\kappa = w(X)$, so the following makes sense.

An elementary sequence of pairs for X is a sequence $\langle \{x_{\alpha}, y_{\alpha}\} : \alpha \in \omega_1 \rangle$ such that, always,

We assume X to be embedded into $[0,1]^{\kappa}$, say $\kappa = w(X)$, so the following makes sense.

An elementary sequence of pairs for X is a sequence $\langle \{x_{\alpha},y_{\alpha}\} : \alpha \in \omega_{1} \rangle$ such that, always, $x_{\alpha} \upharpoonright M_{\alpha} = y_{\alpha} \upharpoonright M_{\alpha}$,

We assume X to be embedded into $[0,1]^{\kappa}$, say $\kappa = w(X)$, so the following makes sense.

An elementary sequence of pairs for X is a sequence $\langle \{x_{\alpha}, y_{\alpha}\} : \alpha \in \omega_{1} \rangle$ such that, always, $x_{\alpha} \upharpoonright M_{\alpha} = y_{\alpha} \upharpoonright M_{\alpha}$, $x_{\alpha} \neq y_{\alpha}$

We assume X to be embedded into $[0,1]^{\kappa}$, say $\kappa = w(X)$, so the following makes sense.

An elementary sequence of pairs for X is a sequence $\left\langle \left\{ x_{\alpha},y_{\alpha}\right\} : \alpha\in\omega_{1}\right\rangle$ such that, always, $x_{\alpha}\upharpoonright M_{\alpha}=y_{\alpha}\upharpoonright M_{\alpha},$ $x_{\alpha}\neq y_{\alpha}$, and $\left\{ x_{\alpha},y_{\alpha}\right\} \in M_{\alpha+1}.$

We assume X to be embedded into $[0,1]^{\kappa}$, say $\kappa = w(X)$, so the following makes sense.

An elementary sequence of pairs for X is a sequence $\langle \{x_{\alpha},y_{\alpha}\}: \alpha \in \omega_{1} \rangle$ such that, always, $x_{\alpha} \upharpoonright M_{\alpha} = y_{\alpha} \upharpoonright M_{\alpha}$, $x_{\alpha} \neq y_{\alpha}$, and $\{x_{\alpha},y_{\alpha}\} \in M_{\alpha+1}$.

One of the coordinate sequences may be constant.

Elementary sequences and small Diagonals

Gruenhage: a compact space is csD iff every ω_1 -sequence of pairs is ω_1 -separated,

Gruenhage: a compact space is csD iff every ω_1 -sequence of pairs is ω_1 -separated, i.e., there is an uncountable set A such that $\operatorname{cl}\{x_\alpha:\alpha\in A\}$ and $\operatorname{cl}\{y_\alpha:\alpha\in A\}$ are disjoint.

Gruenhage: a compact space is csD iff every ω_1 -sequence of pairs is ω_1 -separated, i.e., there is an uncountable set A such that $\operatorname{cl}\{x_\alpha:\alpha\in A\}$ and $\operatorname{cl}\{y_\alpha:\alpha\in A\}$ are disjoint.

In fact: a compact space is csD iff every elementary sequence of pairs is ω_1 -separated.

Gruenhage: a compact space is csD iff every ω_1 -sequence of pairs is ω_1 -separated, i.e., there is an uncountable set A such that $\operatorname{cl}\{x_\alpha:\alpha\in A\}$ and $\operatorname{cl}\{y_\alpha:\alpha\in A\}$ are disjoint.

In fact: a compact space is csD iff every elementary sequence of pairs is ω_1 -separated.

In case the x_{α} are the same this means that $\langle y_{\alpha} : \alpha \in \omega_1 \rangle$ will have many complete accumulation points.

Gruenhage: a compact space is csD iff every ω_1 -sequence of pairs is ω_1 -separated, i.e., there is an uncountable set A such that $\operatorname{cl}\{x_\alpha:\alpha\in A\}$ and $\operatorname{cl}\{y_\alpha:\alpha\in A\}$ are disjoint.

In fact: a compact space is csD iff every elementary sequence of pairs is ω_1 -separated.

In case the x_{α} are the same this means that $\langle y_{\alpha} : \alpha \in \omega_1 \rangle$ will have many complete accumulation points.

Now go back to the proof and recognize all these ingredients.

Remember: a compact space is metrizable iff its diagonal is a G_{δ} -set.

Remember: a compact space is metrizable iff its diagonal is a G_{δ} -set.

Also: a compact space is metrizable iff every elementary sequence of pairs does not exist.

Remember: a compact space is metrizable iff its diagonal is a G_{δ} -set.

Also: a compact space is metrizable iff every elementary sequence of pairs does not exist.

We are lead to ask

Remember: a compact space is metrizable iff its diagonal is a G_{δ} -set.

Also: a compact space is metrizable iff every elementary sequence of pairs does not exist.

We are lead to ask
Is every csD space metrizable?

I will discuss various positive consistency results.

I will discuss various positive consistency results.

There is as yet no consistent *negative* answer.

I will discuss various positive consistency results.

There is as yet no consistent negative answer.

This explains the title of this talk: there are no illuminating examples of csD spaces

I will discuss various positive consistency results.

There is as yet no consistent negative answer.

This explains the title of this talk: there are no illuminating examples of csD spaces; for all we know they are all metrizable.

If X is csD and $w(X) \leq \aleph_1$ then X is metrizable

If X is csD and $w(X) \leq \aleph_1$ then X is metrizable, because X is not csD if $w(X) = \aleph_1$.

If X is csD and $w(X) \leq \aleph_1$ then X is metrizable, because X is not csD if $w(X) = \aleph_1$.

We assume $X\subseteq [0,1]^{\omega_1}$, we take an elementary sequence, and with it an elementary sequence of pairs.

If X is csD and $w(X) \leq \aleph_1$ then X is metrizable, because X is not csD if $w(X) = \aleph_1$.

We assume $X\subseteq [0,1]^{\omega_1}$, we take an elementary sequence, and with it an elementary sequence of pairs.

Note: $\omega_1 \subseteq \bigcup_{\alpha} M_{\alpha}$.

If X is csD and $w(X) \leq \aleph_1$ then X is metrizable, because X is not csD if $w(X) = \aleph_1$.

We assume $X\subseteq [0,1]^{\omega_1}$, we take an elementary sequence, and with it an elementary sequence of pairs.

Note: $\omega_1 \subseteq \bigcup_{\alpha} M_{\alpha}$.

Let $A \subseteq \omega_1$ be uncountable and let x be such that $\{\alpha \in A : x_\alpha \in V\}$ is uncountable, for every basic neighbourhood V of x.

If X is csD and $w(X) \leq \aleph_1$ then X is metrizable, because X is not csD if $w(X) = \aleph_1$.

We assume $X\subseteq [0,1]^{\omega_1}$, we take an elementary sequence, and with it an elementary sequence of pairs.

Note: $\omega_1 \subseteq \bigcup_{\alpha} M_{\alpha}$.

Let $A \subseteq \omega_1$ be uncountable and let x be such that $\{\alpha \in A : x_\alpha \in V\}$ is uncountable, for every basic neighbourhood V of x.

Let V be such a neighbourhood and pick δ such that V is supported in M_{δ} .

If X is csD and $w(X) \leq \aleph_1$ then X is metrizable, because X is not csD if $w(X) = \aleph_1$.

We assume $X\subseteq [0,1]^{\omega_1}$, we take an elementary sequence, and with it an elementary sequence of pairs.

Note: $\omega_1 \subseteq \bigcup_{\alpha} M_{\alpha}$.

Let $A \subseteq \omega_1$ be uncountable and let x be such that $\{\alpha \in A : x_\alpha \in V\}$ is uncountable, for every basic neighbourhood V of x.

Let V be such a neighbourhood and pick δ such that V is supported in M_{δ} .

Then $x_{\alpha} \in V$ iff $y_{\alpha} \in V$ for $\alpha \geqslant \delta$, hence $x \in \operatorname{cl}\{x_{\alpha} : \alpha \in A\} \cap \operatorname{cl}\{y_{\alpha} : \alpha \in A\}$.

Hušek: if X is csD then X is metrizable in each of the following cases

Hušek: if X is csD then X is metrizable in each of the following cases

X has countable tightness

Hušek: if X is csD then X is metrizable in each of the following cases

- X has countable tightness
- X is separable

Hušek: if X is csD then X is metrizable in each of the following cases

- X has countable tightness
- X is separable

Separable: $w(X) \leqslant 2^{\aleph_0} = \aleph_1$, so there

Hušek: if X is csD then X is metrizable in each of the following cases

- X has countable tightness
- X is separable

Separable: $w(X) \leqslant 2^{\aleph_0} = \aleph_1$, so there

Countable tightness: it implies separability in this case

Juhász and Szentmiklóssy: if X has uncountable tightness then there is a free ω_1 -sequence $\langle x_\alpha : \alpha \in \omega_1 \rangle$ that converges, to x say.

Juhász and Szentmiklóssy: if X has uncountable tightness then there is a free ω_1 -sequence $\langle x_\alpha : \alpha \in \omega_1 \rangle$ that converges, to x say.

Then $\langle \{x, x_{\alpha}\} : \alpha \in \omega_1 \rangle$ would not be ω_1 -separated.

Juhász and Szentmiklóssy: if X has uncountable tightness then there is a free ω_1 -sequence $\langle x_\alpha : \alpha \in \omega_1 \rangle$ that converges, to x say.

Then $\langle \{x, x_{\alpha}\} : \alpha \in \omega_1 \rangle$ would not be ω_1 -separated.

Hence: csD spaces have countable tightness

Juhász and Szentmiklóssy: if X has uncountable tightness then there is a free ω_1 -sequence $\langle x_\alpha : \alpha \in \omega_1 \rangle$ that converges, to x say.

Then $\langle \{x, x_{\alpha}\} : \alpha \in \omega_1 \rangle$ would not be ω_1 -separated.

Hence: csD spaces have countable tightness and the Continuum Hypothesis implies csD spaces are metrizable.

Proper Forcing Axiom

Dow and Pavlov: PFA implies csD spaces are metrizable.

Proper Forcing Axiom

Dow and Pavlov: PFA implies csD spaces are metrizable.

I'm not even attempting to sketch the proof.

Gruenhage: If X is csD and hereditarily Lindelöf (equivalently, perfectly normal) then X is metrizable.

Gruenhage: If X is csD and hereditarily Lindelöf (equivalently, perfectly normal) then X is metrizable.

Take an elementary sequence of pairs and $A \subseteq \omega_1$ uncountable. Then $\{x_\alpha : \alpha \in A\}$ is Lindelöf.

Gruenhage: If X is csD and hereditarily Lindelöf (equivalently, perfectly normal) then X is metrizable.

Take an elementary sequence of pairs and $A \subseteq \omega_1$ uncountable. Then $\{x_{\alpha} : \alpha \in A\}$ is Lindelöf.

Pick $\delta \in A$ such that $\{\alpha \in A : x_{\alpha} \in V\}$ is uncountable, for every basic neighbourhood V of x_{δ} .

Gruenhage: If X is csD and hereditarily Lindelöf (equivalently, perfectly normal) then X is metrizable.

Take an elementary sequence of pairs and $A \subseteq \omega_1$ uncountable.

Then $\{x_{\alpha} : \alpha \in A\}$ is Lindelöf.

Pick $\delta \in A$ such that $\{\alpha \in A : x_{\alpha} \in V\}$ is uncountable, for every basic neighbourhood V of x_{δ} .

 $M_{\delta+1}$ contains a countable local base, \mathcal{B} , at x_{δ} .

Gruenhage: If X is csD and hereditarily Lindelöf (equivalently, perfectly normal) then X is metrizable.

Take an elementary sequence of pairs and $A \subseteq \omega_1$ uncountable.

Then $\{x_{\alpha} : \alpha \in A\}$ is Lindelöf.

Pick $\delta \in A$ such that $\{\alpha \in A : x_{\alpha} \in V\}$ is uncountable, for every basic neighbourhood V of x_{δ} .

 $M_{\delta+1}$ contains a countable local base, \mathcal{B} , at x_{δ} .

For each member B of \mathcal{B} and $\alpha > \delta$ we have $x_{\alpha} \in B$ iff $y_{\alpha} \in B$.

Let us squeeze whatever we can out of that proof, put $M = \bigcup_{\alpha} M_{\alpha}$.

Let us squeeze whatever we can out of that proof, put $M = \bigcup_{\alpha} M_{\alpha}$.

It suffices that X be first-countable and $X \cap M$ be Lindelöf: we don't need x_{δ} , just an x in $X \cap M$.

Let us squeeze whatever we can out of that proof, put $M = \bigcup_{\alpha} M_{\alpha}$.

It suffices that X be first-countable and $X \cap M$ be Lindelöf: we don't need x_{δ} , just an x in $X \cap M$.

For that Lindelöfness of $X \cap M$ is enough.

Let us squeeze whatever we can out of that proof, put $M = \bigcup_{\alpha} M_{\alpha}$.

It suffices that X be first-countable and $X \cap M$ be Lindelöf: we don't need x_{δ} , just an x in $X \cap M$.

For that Lindelöfness of $X \cap M$ is enough.

We do need a countable local base at x to make the last part work.

It suffices that $X \cap M$ be Lindelöf for just one elementary sequence.

It suffices that $X \cap M$ be Lindelöf for just one elementary sequence. For then we can prove that our csD space X is first-countable.

It suffices that $X \cap M$ be Lindelöf for just one elementary sequence. For then we can prove that our csD space X is first-countable.

If X is not then some $x \in X \cap M_0$ does not have a countable local base.

It suffices that $X \cap M$ be Lindelöf for just one elementary sequence. For then we can prove that our csD space X is first-countable.

If X is not then some $x \in X \cap M_0$ does not have a countable local base.

Hence we can choose $x_{\alpha} \in M_{\alpha+1}$ such that $x_{\alpha} \neq x$, but $x_{\alpha} \upharpoonright M_{\alpha} = x \upharpoonright M_{\alpha}$.

It suffices that $X \cap M$ be Lindelöf for just one elementary sequence. For then we can prove that our csD space X is first-countable.

If X is not then some $x \in X \cap M_0$ does not have a countable local base.

Hence we can choose $x_{\alpha} \in M_{\alpha+1}$ such that $x_{\alpha} \neq x$, but $x_{\alpha} \upharpoonright M_{\alpha} = x \upharpoonright M_{\alpha}$.

Let $A \subseteq \omega_1$ be uncountable and let $y \in M$ be a complete accumulation point of $\{x_\alpha : \alpha \in A\}$.

It follows that $y \upharpoonright M_{\alpha} = x \upharpoonright M_{\alpha}$ for all α and hence $x \upharpoonright M = y \upharpoonright M$.

It follows that $y \upharpoonright M_{\alpha} = x \upharpoonright M_{\alpha}$ for all α and hence $x \upharpoonright M = y \upharpoonright M$.

By elementarity: x = y.

It follows that $y \upharpoonright M_{\alpha} = x \upharpoonright M_{\alpha}$ for all α and hence $x \upharpoonright M = y \upharpoonright M$.

By elementarity: x = y.

The sequence $\langle x_{\alpha} : \alpha \in \omega_1 \rangle$ converges to x.

It follows that $y \upharpoonright M_{\alpha} = x \upharpoonright M_{\alpha}$ for all α and hence $x \upharpoonright M = y \upharpoonright M$.

By elementarity: x = y.

The sequence $\langle x_{\alpha} : \alpha \in \omega_1 \rangle$ converges to x.

Contradiction.

ω_1 -free spaces

Hušek asked: does every compact Hausdorff space have either a convergent ω -sequence or a convergent ω_1 -sequence.

ω_1 -free spaces

Hušek asked: does every compact Hausdorff space have either a convergent ω -sequence or a convergent ω_1 -sequence.

Call a space ω_1 -free of it contains no convergent ω_1 -sequences.

ω_1 -free spaces

Hušek asked: does every compact Hausdorff space have either a convergent ω -sequence or a convergent ω_1 -sequence.

Call a space ω_1 -free of it contains no convergent ω_1 -sequences.

In particular csD spaces are ω_1 -free.

A consistent "Yes" to Hušek

In any extension of a model of the Continuum Hypothesis by a property K forcing every ω_1 -free compact space is L-reflecting (there is an elementary sequence for it such that $X \cap M$ is Lindelöf) and (hence) first-countable.

A consistent "Yes" to Hušek

In any extension of a model of the Continuum Hypothesis by a property K forcing every ω_1 -free compact space is L-reflecting (there is an elementary sequence for it such that $X \cap M$ is Lindelöf) and (hence) first-countable. In particular csD spaces are metrizable in these extensions.

However

The main question remains: are compact csD spaces metrizable.

However

The main question remains: are compact csD spaces metrizable.

(Many partial questions do not have answers yet either: somewhere/everywhere first-countable, what is the weight, . . .)

However

The main question remains: are compact csD spaces metrizable.

(Many partial questions do not have answers yet either: somewhere/everywhere first-countable, what is the weight, . . .)

I will be expecting solutions from you next year.

Light reading

Website: fa.its.tudelft.nl/~hart

Elementary chains and compact spaces with a small diagonal, Indagationes Mathematicae, **23** (2012), 438–447.

Alan Dow and Klaas Pieter Hart,

Reflecting Lindelöf and converging ω_1 -sequences, Fundamenta Mathematicae, **224** (2014) 205–218.

